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Abstract. In multiply bonded, weakly interacting systems the excessive electron 
repulsion associated with the non-dynamical correlation error can be reduced 
within the Hartree Fock approximation by localizing the bonding orbitals. The 
mechanism behind this (unphysical) orbital localization is studied through 
calculations on a model system, and SCF and CI calculations on the MnO ÷ ion. 
It is shown, from a pair-population analysis of the two-particle density matrix 
(which is analogous to a Mulliken population analysis of the one-density) that 
the orbital localization is a two-electron effect. Transition metal molecules often 
exhibit this kind of orbital localization which may (or may not) require symmetry 
breaking. The special characteristics of transition metal molecules that makes 
them suitable candidates for orbital localization will be discussed. 
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1. Introduction 

Recently we studied the origin of the large weak-interaction Hartree Fock 
(HF) error in the ground state of the MnO4 ion and showed that, as a result, 
the bonding orbitals are localized, giving the individual bonds too much ionic 
character [1]. On the SCF (self consistent field) level, this unphysical orbital 
localization is difficult to detect because it does not require symmetry breaking. 
Furthermore, the weak-interaction error does not reveal itself through near 
degeneracy of bonding and antibonding orbitals. The HF function looks 
"normal". In a configuration interaction (CI) calculation, however, the anoma- 
lous HF behaviour can be clearly demonstrated: covalency is restored as a 
result of considerable density changes while the non-dynamical correlation 
error is large (about 14 eV). This kind of HF behaviour has been studied 
before, but only in a few systems, and almost always in connection with 
symmetry breaking and HF instabilities [2-5]. The conditions that favour 
orbital localization (multiple bonding, small overlap and weak interaction and 
large on-site repulsion) are, however, not symmetry dependent and orbital 
localization can equally well occur in those systems in which there is no 
symmetry breaking to alert us [1]. 
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In this paper we shall discuss the mechanism behind orbital localization by 
analysing, in section 2, the results of calculations on a simple but illustrative 
model system and, in section 3, the results of SCF and CI calculations on the 
"real" system MnO ÷. This ion is interesting because it also represents the 
group of transition metal molecules, in which the conditions that favour a large 
non-dynamical correlation error and orbital localization are already present at 
the equilibrium bond distance. Orbital localization, with or without symmetry 
breaking, will therefore not be rare in this group of molecules. In section 3, we 
shall discuss the special characteristics of the transition metal molecules, that 
make them suitable candidates for orbital localization. The conclusions are 
summarized in section 4. 

2. Orbital localization in a model system 

In this section we shall study and discuss the mechanism behind orbital 
localization, making use of a simple, homonuclear, model system, consisting 
of two atoms A and B, with N electrons in N/2 bonding orbitals. In evaluat- 
ing the HF energy expressions we shall make some simplifying approxima- 
tions that do not affect the essential characteristics of the model and are 
reasonable for the cases of small overlap and weak interaction that we are 
interested in. 

In the model system, the AO (atomic orbital) ~b/A on center A will overlap 
with one orbital ~b~, on center B, i.e., (~b~l~b~)=0 if i ~ j .  It is further 
assumed that the overlap M = (~b~l~b ~) is equal for all i. From the two sets of 
AO's {~b a} and {q5 B} we can then construct N[2 (delocalized) bonding orbitals 
Zi and N]2 (delocalized) antibonding orbitals Z* 

1 1 
Z~- 2 ~ ( ~ b #  + ~b~), Z~* - ~ ( q  b# - ~b~). (1) 

By making linear combinations of Z~ and )~* we can construct (broken symme- 
try) orbitals that are (partly) localized on either A or B 

q~i = cos(#~)Z~ + sin(#~)Z* = ai~b~ + b;q~, (2) 

with a i and bi given by 

COS/£i sin pg COS #i sin #; 
= -~ b~ = . (3) 

, /2  + 2M , /2  + 2M 

The degree of localization is determined by the angle #i. If  #e = 0 (a,. = b~) or 
/~i = +½re (ai = - b ; )  then ~0~ is completely delocalized, while the bond is com- 
pletely localized on center A or B if cos #;/x/2 + 2M = -t-sin # ~ / x / 2 -  2M = ½; 
if we neglect overlap then this is the case if #i = +--¼n. 

We now define a HF function, built from these orbitals, 
kg(1..-  N ) =  [~p101~02q52-.. [, and calculate expressions for the one- and two- 
electron energy, which are both parametrically dependent on the localization 
parameters #i- Note that each bond (labeled with the index i) contains just two 
electrons, so only one orbital (either delocalized or localized) is occupied per 
bond. 
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One-electron energy 

In the expression for the one-electron energy E (1), for simplicity we shall use the 
following approximations in our model system: 

h a '`  = h ~s = <¢/~ Ih ' l¢~  > = <¢;" Jh'l ¢ ,  -a >. 

h As=  (e f t  I/~'1¢~) = ( ¢ ~  InCl¢?), (4) 

i.e., all bonds have comparable strength in the model system. E (1) can be 
calculated from the one-electron density 

~N 
p(l',  1) = • 2~o, (1')~0~ (1) 

i=1 

= Z 2a~¢O(r)¢9(1)  + Y, 2b~¢ea(l')¢~(1) 
i=1 i=1  

+ Y, 2aib~[¢9(l')¢/a(1) + ¢,B(1')¢~(1)]. (5) 
i=1 

I f  we define the constants QA, OB, and QAB as 

21-N ½N I N  

e A= Z 2a~, ¢B= Z 2b2, 0 As= Z 4aibe (6) 
i=1  i=1  i = l  

then the one-electron energy can be expressed as 

I N l N 

E(') = y~ 2<~oilfi]~o,> = 0ahaa  + o~h"~+ e*'~h*"~= ~, E}'), 
i=1  i=1  

with 

E~I) 2( hAA - h As) 4(Mh AA _ h as) 
- 1 -- M cos2/~i 1 - -  M 2 

The lowest value of E~ 1) is reached when 

cos #i = 1 {q~; = Zi, E} l) = 2(h-AA--+-hAS)~ 
I + M  J 

c o s  ,u i ~-- 0 {~O i = Z ~ ,  g ~  1) - 2(h-AA -- hA")~ 
1 - M  J' 

o r  

(7) 

depending on the sign of Mh AA --h An (if the phases are chosen such that M > 0, 
this term will usually be positive). The minimum in the total one-electron energy 
is therefore reached when all orbitals are delocalized and symmetry adapted. 
Breaking the symmetry and localizing one or more orbitals will always lead to an 
increase of the one-electron energy. Only if Mh A A -  hAB= 0, which is e.g. the 
case at long internuclear distance where both the overlap and the interaction are 
zero, is the one-electron energy independent of the degree of localization. We can 
conclude that symmetry breaking and orbital localization are two-electron 
effects. 
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Two-electron energy 

The electron repulsion energy E (2) is determined by the two-particle density 

1 N 1 N 

r(2)(1,2)=2 Y', q~;(1)~0i(1)tpj(2)q~j(2)- ~ rp~(1)q0j(1)tpi(2)q~j(2). (8) 
i , j  = 1 i,j  = 1 

For our purposes, it is very useful to analyse F(2)( 1, 2) in a way that is analogous 
to a MuUiken population analysis [6] of the one-electron density, Q(1). In a 
Mulliken analysis, the N electrons in the molecule are divided over the various 
atoms. To do this, Q(1) is expressed in the AO basis and each product 
0 ~B~ b A(1)qS~(1) contributes 2~ijl ^ AB ",q) i / A. A l imb  > to the population of both the atoms 
A and B (note that this is also correct if A--B;  the total contribution to the 
population of atom A is in that case equal to ~ij^AA/A'AIq~jB))'",tPi The two-density 
F(2)( 1, 2) is a pair-probability and we are concerned with the problem of dividing 
½N(N - 1) electron pairs. We can distinguish between two types of electron pairs: 
on-site pairs with both electrons on the same center and inter-atomic pairs, with 
the two electrons on two different centers. The symbol F will be used for the 
pair-population, FAA being the number of on-site pairs with both electrons on 
center A and FAB the number of inter-atomic pairs with one electron on A and 
one on B. If F(2)(1,2) is expressed in the AO basis, the product 
F(2)ABCD,4 ,  A [  1~ ./~ Bf ijkl Wi k ~ J ~ j l . l ) ~ b C ( 2 ) q ~ D ( 2 )  contributes "~.tijkllr(2)ABCO/'/~AIq~B)(qbkC[q~D ) \ , e l  I t o  

each of the pair populations FAG , FAD , FBC and FBD. The total number of 
electron pairs is, of course, always equal to ~A FAg + ~A>b FAB = 1N( N --1). 
This pair-population analysis is especially useful in case of HF functions because, 
as we will see below, the source of the non-dynamical or molecular HF error can 
be traced back to an incorrect ratio of on-site and inter-atomic pairs. 

In calculating an expression for the two-electron energy E (2) in the model 
system we make the following approximations for the two-electron integrals: 

JAb = [~b ia~ hA, ~b ~b/B] = [~Aq 5A, ~b~b~] = [~b~b A, qS~bJ3]. (9) 

We will further neglect the two-electron integrals of the type [4~A~b A, ~bA~bB], 
[~bA~b~, q~BqSb] and [~bA4~b, ~bA~bB], and also the exchange integrals 
[~b)q~ A, q~)q~], [qS)qS~, qS/BqS~] and [~b~b} ~, ~b~qS~]. These integrals are often more 
than an order of magnitude smaller than the Coulomb integrals JAA, JAb and 
JBb, especially if the overlap is small. 

The expression for the electron repulsion energy E (2~ is then given by 

E(Z) = " "IF(2)(1, 2) dld2 : Y~JA~ + rbbJbB + Cab JAb, (10) 
, J  r12  

with the on-site pair-populations FAg and F~b and the inter-atomic pair-popula- 
tion FA~ given by 

1 N 1 N 1 N 1 N 

FAg= E a4 +4 Z a~ a}, F~,= E b4 +4 Z bZb~, 
i = 1  i , j> i  i = l  i , j> i  

½u ½N (11) 
F A B  2 2 2 2 2 2aib i + 4  ~ 2 2 = (a i b j  -t- b i a j  ) .  

i = 1  i , j> i  

(Note that Eqs. (11) only approximately hold in case of non-zero overlap, due 
to the neglect of products of type ~bA(l)qSA(1)~bA(2)~bB(2) and 
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~ba(1)~bB(1)~bA(2)~bB(2) in F(2)(1, 2).) In the HF approximation, the total num- 
ber of on-site electron pairs will generally be too high, leading to too much 
electron repulsion because an on-site electron pair represents more repulsion 
than an inter-atomic pair (JAA > JAB). This is the well known (non-dynamical) 
HF error [7]. It is especially large in the case of large internuclear distance where 
JA~ ~ 0. Because the total number of on-site pairs FAA + FBB depends on the 
localization parameters /ti, the HF wavefunction can control, within certain 
boundaries, the magnitude of the HF error by localizing one or more of the 
orbitals. Whether the orbitals will actually come out localized is, of course, not 
determined by the magnitude of the HF error alone but also by the energy 
stabilization associated with the interaction. As we saw earlier, the one-electron 
contribution to the total interaction energy will, in general, profit from orbital 
d e l o c a l i z a t i o n .  The degree of localization will therefore depend on the magnitude 
of the HF error, r e l a t i v e  to the total interaction energy. 

For the case of zero overlap and interaction, the one-electron energy is no 
longer dependent on the degree of localization and the HF  error is the only 
contribution to the total interaction energy. The total number of on-site electron 
pairs is in this case given by 

rAA + rB .=  (a4+b¢)+4 
i= 1 i , j> i 

= ~ N ( N  - 1) + ½ 2 sin2 2#i + 2 2 sin 2~i sin 2#j . (12) 
i = l  i , j > i  

It is clear from Eq. (12) that in the single-bond case the number of on-site 
electron pairs (and the electron repulsion energy) is minimal if Pi--0,  corre- 
sponding to a bond that is delocalized and symmetry adapted. In multiply 
bonded systems, however, the HF  wavefunction can lower the electron repul- 
sion energy by breaking the symmetry and localizing one or more bonding 
orbitals. In Table 1, the number of on-site and inter-atomic electron pairs are 
compared for the HF function with delocalized (or symmetry adapted, SA) 
orbitals and the HF  function with localized (or broken symmetry, BS) orbitals. 
In the BS case, the localization is chosen in such a way as to minimize the total 
number of on-site electron pairs. Note that with an odd number of bonds, the 
lowest energy is reached if one of the orbitals stays delocalized, a result that 
was also found by Lepetit et al. in their calculations on N2 [5]. The exact (or 
full CI) values are also listed in Table 1. These exact values can be easily 
calculated because, in this case of zero overlap and interaction, the electrons 
will always be divided evenly over the two atoms due to correlation. In the SA 
HF case, the number of on-site electron pairs is too high, compared to the 
exact values (Table I). This is precisely what is meant when we say that the HF 
wavefunction puts too much weight on ionic configurations. Note that the error 
increases with the number of bonds. I f  broken symmetry solutions are not 
allowed, or if there is only a single bond, then the number of on-site electron 
pairs and the electron repulsion energy can only be lowered by correlating the 
movement of the electrons in a CI calculation. If, however, broken symmetry 
orbitals are allowed and we have a multiply bonded system, then the electron- 
repulsion energy can always be lowered on the HF  level by localizing the 
orbitals. For an even number of bonding orbitals we can even reach the exact 
number of on-site pairs if we localize half of the orbitals on center A and the 
other half on center B. 
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Table 1. Total number of on-site and inter-atomic electron pairs for exact (full CI), symmetry adapted (SA) 
HF and broken symmetry (BS) HF functions, in a homonuclear model system with N electrons in ½N bonds 
and zero overlap and interaction 

Bonds Electron pairs exact SA HF (#i = 0) 

FAA + FBB FAB FAA + FBB FAB 

BS HF 

]2 FAA + EBB FAB 

' {~1 ' 1 o} 1 1 0 1 ½ 2 - = ~  

~'=¼~ 
2 6 2 4 3 3 #2 = -¼re] 2 4 

3 15 6 9 7½ 7½ /22 = -¼~ 6½ 8½ 

# 3 = 0  

#1 = ~7"c 

4 28 12 16 14 14 /22 = ¼~ , 12 16 
#3 = --~rc 
/2 4 = --'~X 

½N ½N(N - 1) ¼N(N - 2) ~N' 2 ¼N(N - 1) ¼N(N - 1) 

In the case of non-zero overlap, the total number of on-site electron pairs will 
also depend on the overlap M. We analyse this dependency in a double-bond 
system in which the two bonds are allowed to localize in opposite directions, 
with localization parameter # = ~1 = --/A2- In Fig. 1, the total number of on-site 
electron pairs, FAA q- EBB , is plotted as a function of #, for several values of the 
overlap M. Although the calculated value of FAg + FBB [using Eqs. (11)] is only 
approximately equal to the e x a c t  number of on-site electron pairs if M ~ 0, Fig. 
1 gives a good indication of what happens: the stabilization in electron repulsion 
energy, due to localization, is smaller for larger overlap. As far as the electron 
repulsion energy is concerned, the tendency to localize the orbitals will therefore 
decrease with increasing overlap. 

FAA+FBB 

4.0 '  

M--'O.O / 
3.0 

2.0 

1.0 

--4~ l 
o.o iXr=_lx 2 -X~ 

Fig. 1. Total number of on- 
site electron pairs as a func- 
tion of localization in a 
double bond system with 
# = #1 = - P c  and for sev- 
eral values of the overlap M 
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Etot 
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-25.0 
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-~-~ 

M--0.05 I h _-_lo.o h =_3.o 
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_____7.oS 
~ 12.0 j 

~ 1 0 . 0  

~-~ I 6.0 ~ 4.0 

1 
°~'° ~ff-P~2 ~'~ 

Fig. 2. Total energy 
E = E (1) + E (2) as a function 
of  localization in a double 
bond system with 
# = #1 = - # 2  and for sev- 
eral values of the on-site re- 
pulsion integral JAA" 
Connecting lines are drawn 
through the minimia in the 
E(#) curves 

The magnitude of the HF error not only depends on the number of on-site 
electron pairs but also on the value of the on-site and inter-atomic repulsion 
integrals JAA and JAa. In Fig. 2 the total energy E = E (1) + E (2) is plotted (for 
the double-bond system discussed above) as a function of localization for 
several values of the on-site integral JAA. The quantities M, h AA, h AB and JAB 
are assigned values so that the model represents a weakly interacting system. 
These quantities are kept constant, only JAA is varied. It is clear from Fig. 2 
that at small values of JAA the lowest energy is reached when the orbitals are 
delocalized (~ = 0) and that localization becomes profitable at larger values of 
JAA. It is interesting to note the relative insensitivity of the total energy to the 
degree of localization. Especially with JAA values around 10.0, the energy of the 
SA function with delocalized orbitals is about equal to the energy of the BS 
function with localized orbitals. 

Homonuclear systems, like the model system discussed above are advanta- 
geous because a large weak-interaction HF error can often be diagnosed at the 
SCF level: if the HF function is optimized without symmetry constraints, the 
HF error and associated orbital localization may reveal itself directly through 
symmetry breaking. If we prevent orbital localization (by the simple require- 
ment that the orbitals are symmetry adapted), the presence of a considerable 
HF error can be determined from an analysis of the roots of the singlet 
instability matrix [8] or from the near degeneracy of bonding and antibonding 
orbitals (the non-dynamical correlation error is often called the near-degener- 
acy correlation error). 

The conditions that favour a large HF error and orbital localization (multiple 
bonding, small overlap/weak interaction and large on-site repulsion) are, however, 
not symmetry dependent and can equally well occur in (hetero-nudear) systems 
where the orbitals can localize without breaking the symmetry [1, 3, 4]. In these 
systems, there is no way in which we can prevent the unphysical localization of 
the bonding orbitals. Furthermore, the large HF error will often go unnoticed 
because it does not reveal itself through near degeneracy of bonding and 
antibonding orbitals or through negative roots of the singlet instability matrix. 
However, also in systems where there is no symmetry breaking to alert us, we 
should beware of unwarranted localization effects at the HF level. These are, 
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just as symmetry breaking is when there is symmetry to be broken, an indication 
of a considerable weak-interaction HF error that has to be remedied by CI. 

3. Orbital localization in transition metal molecules 

In this section we shall present and discuss the results of some minimal basis 
SCF and CI calculations on MnO + with a twofold purpose: to corroborate the 
model-system results, discussed in the previous section and to illustrate the 
special characteristics of transition metal systems that make them suitable 
candidates for orbital localization. The MnO-- ion is a hetero-nuclear, triply 
bonded, closed shell molecule with SCF conf igurat ion. . -  7~40"2~ 4. The a and rc 
bonds are linear combinations of overlapping Mn3d and 02, orbitals, while the 
6 orbitals are pure metal 3d. In the CI calculations, each bond is represented by 
a linear combination of the three possible configurations (qSqS, qS~b* and qS*~b*) in 
the space of bonding and antibonding orbitals. It is clear that a wavefunction 
constructed in this way will properly describe dissociation [9]. In MnO ÷, with 
three bonds, the total number of configurations is then 33= 27. 

The origin of the large HF error in transition metal systems can be traced back 
to the limited spatial extension of the metal 3d shell, which is about the same size 
as the 3s/3p shell although the latter is much lower in energy and often considered 
core-like. Pauli (or closed shell) repulsion between ligand orbitals that overlap 
with the 3d orbitals to form a bond and the 3s/3p shell will then prevent the 
internuclear distance becoming small enough for efficient overlap and interaction. 
A detailed analysis of this problem can be found elsewhere [ 1]. A second reason 
for the small overlap is the nodal structure of the 3d orbitals preventing the 
overlap reaching a large value, even at internuclear distances that are much 
smaller than the equilibrium distance. This is illustrated in Fig. 3, where the 
overlap in a and zc symmetry is shown for MnO ÷, as function of Mn-O distance. 
In the rc symmetry the poor  overlap at Re is caused by the long Mn-O distance, 
while the small overlap in the a symmetry is also a result of the nodal structure 
of the overlapping 2p and 3d orbitals. The inefficient overlap is directly responsible 
for the weak interaction and large HF error, the magnitude of which is further 

0.5 

0.0 

-0.5 
0.5 

Re 

I l i I 
1.5 2.5 3 5 4.5 5.5 

RMn.O (bohr) 

Fig. 3. Overlap between Mn 3d 
and O 2p orbitals as a function of 
Mn-O distance. R~ is the calculated 
equilibrium distance for the MnO + 
ion 
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3d 
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0 
2.0 5.5 

total HF 

. ~  ~ HF 

/ ~  . . . . . . . . . . . . . . . . . . . .  
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. . . .  T . . . . . . . . . . . . . . . . . . . . .  " . . . .  

i'"" a C I 

3.0 (=R e) 4.0 
RMn_ 0 (bohr) 

Fig. 4. Mn  3d occupation in 
orbitals of  a and n symme- 
try and total 3d occupation 
in the M n O  ÷ ion as a func- 
tion of Mn-O distance. In 
the n symmetry, the total 
(n~ + ny) occupation is 
shown 

increased by the relatively large on-site 3d-3d repulsion (due to the compact 
nature of the 3d orbitals) and the multiple bonding involving 3d. The result is 
shown in Fig. 4 where the Mulliken 3d~ and 3d, occupations are displayed as 
function of internuclear distance: the o- and rc orbitals localize, the a on the metal 
and the n on the oxygen, if the Mn-O distance increases. It is further clear that 
at the equilibrium distance R e the localization is already substantial but not 
complete. The unrealistic HF behaviour can be dearly demonstrated by compar- 
ing with the CI results. At the CI level, the 3d, and 3d~ occupations do not 
change much over the range of Mn-O distances considered and the a and rc 
bonds show little localization (Fig. 4). The total calculated correlation energy at 
R e is AE = E  c T - E H v =  -5 .5  eV; the changes in the individual contributions 
E (1~ and E (2~ are much larger: - 38 .0eV  and +32.5 eV respectively. It is a 
surprising result that the electron repulsion energy E (2~ increases if electron 
correlation is introduced. A decrease in E (2~ is generally expected upon inclusion 
of CI as electrons are thought to be better able to avoid each other. In this case, 
however, the HF wavefunction already avoided too much repulsion by localizing 
the orbitals. In the CI wavefunction covalency is restored at the expense of 
increasing electron-electron repulsion. Changes in the density matrix, due to the 
reintroduction of orbital delocalization and covalency, are responsible, through 
changes in E (o, for the lowering of the total energy. 

It is interesting to note that these changes do not affect the total 3d (cr + n) 
occupation, which is about the same for HF  and CI wavefunctions (Fig. 4) 
and, furthermore, is remarkably constant over the range of Mn-O distances 
considered. The same result was found in the MnO4 system [1]. To explain 
this phenomenon, we show in Fig. 5 the total HF  energy as a function of 3d~ 
and 3d~ occupation. This total energy was calculated from a determinant with o- 
and n "bonding orbitals" given by: ~G = a, M n 3 d  a + b~ O2m and ~o~ = as M n 3 d e  + 
b~O2p,. By varying the coefficients a and b, the 3d~ and 3d~ occupation can 
be controlled. As a visual aid, we also plotted some lines along which the total 
3d occupation is constant. It is clear from Fig. 5 that the total energy is very 
sensitive to density variations that affect the distribution of density over 
the various sites and involve changes in the total 3d occupation. In fact, the 
energy change associated with only a small change in total 3d occupation is 
larger than the total correlation energy. As a result, the total 3d occupation 
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Fig. 5. MnO ÷ energy surface and projected contours for a determinant with localized a and 
orbitals, as a function of localization. Lines with constant total 3d occupation are also drawn. The 
HF energy is reached when the cr and n occupations are equal to 1.22 and 0.28 respectively 
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Fig. 6. MnO + energy values for 
a determinant with localized cr 
and n orbitals, as a function of 
localization. The total 3d occupa- 
tion is kept constant at the HF 
(and CI) value of 1.5 
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predicted by HF theory will not differ much from the CI (or exact) value. In 
a multiply bonded system, however, the HF wavefunction has some addit- 
ional freedom because the orbitals can be localized (to reduce the electron 
repulsion energy) without changing the total 3d occupation, something that 
is not possible with only a single bond. The energy variations associated 
with this kind of density changes are very small (Fig. 5). In Fig. 6 we show 
the energy as a function of localization when the total 3d occupation is 
kept constant at 1.5, which is the HF (and CI) value. It is clear from this 
plot that the one- and two-electron energy terms are very sensitive to changes 
in the degree of localization. The total energy curve, however, is very flat 
with energy variations that are much smaller than the magnitude of the 
HF error. At the minimum, the HF orbitals are strongly localized, but the 
energy difference with a function with a and rc orbitals that are delocalized to 
the same extent (3d~ occupation is 0.5, total 3d~ occupation is 1.0) is less than 
1 eV. 

It is interesting to note that the invariance, of the total 3d occupation 
discussed above has been observed before in the MnO2 system, in situations 
where the formal number of 3d electrons is changed by charge transfer type 
excitations or by adding one or even two electrons [10, 11]. This phenomenon 
cannot be satisfactorily explained by the compact nature (and correspond- 
ing high repulsion) of the 3d orbitals because the Mn 3d-3d repulsion is not 
much larger than the O 2p-2p repulsion (J3d,3d~,O.8a.u., J2p,2p ~0.7a.u.). 
Furthermore, addition of an extra 3d electron to the MnO + system results 
in an MnO wavefunction in which the extra electron is divided about equally 
over the two atoms, corresponding to a change in 3d occupation of about 
0.5 electron. The remarkable invariance of the total 3d occupation in the 
four-coordinated system can, however, be explained from a pair-population 
analysis as described in section 2 and can be traced back to the fact that the 
total number of on-site electron pairs varies as N 2. Of the 10 bonding electrons 
in MnO4, about 5 will be on the metal and ~ will be on (on average) each of 
the four oxygens. Adding one extra electron to the metal increases the number 
of on-site 3cl-3d pairs from ½5(5- 1) to ½6(6- 1) and we have an increase 
in (on-site) electron repulsion, equal to 5J3d,3d. Adding the extra electron to 
the oxygens will also increase the total number of oxygen-oxygen electron 
pairs by 5. However, not all will be on-site oxygen pairs because the extra 
electron is divided over the four oxygens. Thus part of the 5 additional pairs 
will be inter-atomic O-O pairs which contribute much less to the electron 
repulsion energy. Because the magnitude of the on-site electron repulsion 
integrals is about the same for Mn and O, it is more profitable to add the 
extra electron to the oxygens than to the metal. (The increase in inter-atomic 
Mn-O pairs will be about the same if we add the extra electron to the metal 
or to the oxygens.) The same line of reasoning can be used to explain the fact 
that no charge transfer is observed upon a l igand~metal  "charge-transfer" 
excitation. 

4. Conclusions 

The analysis in this paper illustrates the possible anomalous behaviour of the HF 
wavefunction in multiply bonded systems with weak interactions. The total HF 
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bond energy is the sum of two contributions with different sign: a) an energy 
stabilizing or negative contribution due to the interaction of the two atoms and 
b) a destabilizing or positive contribution associated with the HF error. In 
optimizing the bond-energy a HF calculation will try to maximize a) and at the 
same time minimize b). The magnitudes of both contributions are determined 
by overlap, the interaction matrix element, electron repulsion integrals etc. and 
also by the degree of localization of the orbitals. In case of a strong interaction 
and a small HF error, which is the situation for most systems that are well 
described on HF level, the HF calculation will choose to maximize the energy 
lowering associated with the interaction. The orbitals will come out delocalized 
and the covalent character of the bonds will be correctly described. In case of 
weak interaction and a large HF error, however, it becomes important for the 
HF wavefunction to minimize the increase in electron repulsion energy, associ- 
ated with the HF error. Well known examples of this situation are dissociating 
molecules where the interaction is very weak and becomes zero in the limit of 
complete dissociation. The HF function describing a singly bonded, weakly 
interacting system is often triplet unstable [8], i.e., the energy can be lowered by 
assigning different spins to different space orbitals (UHF method) and breaking 
the symmetry. In multiply bonded systems, the HF  wavefunction can reduce 
the magnitude of the HF error by localizing the bonding orbitals (retaining, 
however, the closed shell character) giving the individual bonds too much ionic 
character. This kind of orbital localization is easily detected if it requires 
symmetry breaking, in which case the symmetry adapted HF function is singlet 
unstable [8]. However, it is important to note that the conditions that favour a 
large HF error and orbital localization are not symmetry dependent and may 
equally well occur in those systems in which there is no symmetry breaking to 
alert us. 

Transition metal molecules represent a group in which all conditions 
that favour orbital localization are already present at equilibrium distance: 
weak interaction and small overlap due to Pauli repulsion, often multiple 
bonding involving 3d orbitals and relatively large 3d-3d repulsion (due to 
the compact nature of the 3d orbitals). Almost all of these molecules are 
described only poorly at the SCF level (they are often unbound!), and 
many show unrealistic localization effects, with or without symmetry breaking. 
In this context, it is interesting to note that it has by now been extensively 
documented that Density Functional (DF) calculations are much more 
successful in describing metal-ligand bonding than Hartree-Fock calculations 
[12-18]. In particular, they do not exhibit the anomalous HF  behaviour dis- 
cussed in this paper. This can be explained by the fact that a "HF-like" 
weak-interaction error is absent in DF calculations. An extensive discussion of 
this point has been given by Cook and Karplus [19] and by Tschinke and 
Ziegler [20]. 
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